Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38739873

RESUMEN

van der Waals (vdW) magnetic materials, such as Cr2Ge2Te6 (CGT), show promise for memory and logic applications. This is due to their broadly tunable magnetic properties and the presence of topological magnetic features such as skyrmionic bubbles. A systematic study of thickness and oxidation effects on magnetic domain structures is important for designing devices and vdW heterostructures for practical applications. Here, we investigate thickness effects on magnetic properties, magnetic domains, and bubbles in oxidation-controlled CGT crystals. We find that CGT exposed to ambient conditions for 5 days forms an oxide layer approximately 5 nm thick. This oxidation leads to a significant increase in the oxidation state of the Cr ions, indicating a change in local magnetic properties. This is supported by real-space magnetic texture imaging through Lorentz transmission electron microscopy. By comparing the thickness-dependent saturation field of oxidized and pristine crystals, we find that oxidation leads to a nonmagnetic surface layer that is thicker than the oxide layer alone. We also find that the stripe domain width and skyrmionic bubble size are strongly affected by the crystal thickness in pristine crystals. These findings underscore the impact of thickness and surface oxidation on the properties of CGT, such as saturation field and domain/skyrmionic bubble size, and suggest a pathway for manipulating magnetic properties through a controlled oxidation process.

2.
Nature ; 628(8008): 515-521, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38509374

RESUMEN

The convergence of topology and correlations represents a highly coveted realm in the pursuit of new quantum states of matter1. Introducing electron correlations to a quantum spin Hall (QSH) insulator can lead to the emergence of a fractional topological insulator and other exotic time-reversal-symmetric topological order2-8, not possible in quantum Hall and Chern insulator systems. Here we report a new dual QSH insulator within the intrinsic monolayer crystal of TaIrTe4, arising from the interplay of its single-particle topology and density-tuned electron correlations. At charge neutrality, monolayer TaIrTe4 demonstrates the QSH insulator, manifesting enhanced nonlocal transport and quantized helical edge conductance. After introducing electrons from charge neutrality, TaIrTe4 shows metallic behaviour in only a small range of charge densities but quickly goes into a new insulating state, entirely unexpected on the basis of the single-particle band structure of TaIrTe4. This insulating state could arise from a strong electronic instability near the van Hove singularities, probably leading to a charge density wave (CDW). Remarkably, within this correlated insulating gap, we observe a resurgence of the QSH state. The observation of helical edge conduction in a CDW gap could bridge spin physics and charge orders. The discovery of a dual QSH insulator introduces a new method for creating topological flat minibands through CDW superlattices, which offer a promising platform for exploring time-reversal-symmetric fractional phases and electromagnetism2-4,9,10.

3.
Nano Lett ; 24(5): 1544-1552, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38270095

RESUMEN

Lithium-metal (Li0) anodes potentially enable all-solid-state batteries with high energy density. However, it shows incompatibility with sulfide solid-state electrolytes (SEs). One strategy is introducing an interlayer, generally made of a mixed ionic-electronic conductor (MIEC). Yet, how Li behaves within MIEC remains unknown. Herein, we investigated the Li dynamics in a graphite interlayer, a typical MIEC, by using operando neutron imaging and Raman spectroscopy. This study revealed that intercalation-extrusion-dominated mechanochemical reactions during cell assembly transform the graphite into a Li-graphite interlayer consisting of SE, Li0, and graphite-intercalation compounds. During charging, Li+ preferentially deposited at the Li-graphite|SE interface. Upon further plating, Li0-dendrites formed, inducing short circuits and the reverse migration of Li0. Modeling indicates the interface has the lowest nucleation barrier, governing lithium transport paths. Our study elucidates intricate mechano-chemo-electrochemical processes in mixed conducting interlayers. The behavior of Li+ and Li0 in the interlayer is governed by multiple competing factors.

4.
Nano Lett ; 23(20): 9392-9398, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37819081

RESUMEN

Anode-free all-solid-state lithium metal batteries (ASLMBs) promise high energy density and safety but suffer from a low initial Coulombic efficiency and rapid capacity decay, especially at high cathode loadings. Using operando techniques, we concluded these issues were related to interfacial contact loss during lithium stripping. To address this, we introduce a conductive carbon felt elastic layer that self-adjusts the pressure at the anode side, ensuring consistent lithium-solid electrolyte contact. This layer simultaneously provides electronic conduction and releases the plating pressure. Consequently, the first Coulombic efficiency dramatically increases from 58.4% to 83.7% along with a >10-fold improvement in cycling stability. Overall, this study reveals an approach for enhancing anode-free ASLMB performance and longevity by mitigating lithium stripping inefficiency through self-adjusting interfacial pressure enabled by a conductive elastic interlayer.

5.
Angew Chem Int Ed Engl ; 62(20): e202302363, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-36917787

RESUMEN

Due to its outstanding safety and high energy density, all-solid-state lithium-sulfur batteries (ASLSBs) are considered as a potential future energy storage technology. The electrochemical reaction pathway in ASLSBs with inorganic solid-state electrolytes is different from Li-S batteries with liquid electrolytes, but the mechanism remains unclear. By combining operando Raman spectroscopy and ex situ X-ray absorption spectroscopy, we investigated the reaction mechanism of sulfur (S8 ) in ASLSBs. Our results revealed that no Li2 S8, Li2 S6, and Li2 S4 were formed, yet Li2 S2 was detected. Furthermore, first-principles structural calculations were employed to disclose the formation energy of solid state Li2 Sn (1≤n≤8), in which Li2 S2 was a metastable phase, consistent with experimental observations. Meanwhile, partial S8 and Li2 S2 remained at the full lithiation stage, suggesting incomplete reaction due to sluggish reaction kinetics in ASLSBs.

6.
ACS Appl Mater Interfaces ; 14(51): 57144-57152, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36516339

RESUMEN

Integrating different two-dimensional (2D) crystals is highly demanded for advancing their application in next-generation electronics. 2D transition metal carbides, nitrides, and carbonitrides (MXenes), as new members in the 2D family, are promising candidates for 2D electrodes because of their high conductivity and stability. However, integrating MXenes with other 2D semiconductors has been underdeveloped due to the limitation of top-down etching synthesis of MXenes. Our recent development of atomic substitution synthesis achieved ultrathin non-van der Waals (non-vdW) transition metal nitrides (TMNs) through the conversion of vdW transition metal dichalcogenides (TMDs), opening opportunities of combining TMDs with TMNs via controllable partial conversion. Here, we perform an in-depth study of the atomic substitution process from semiconducting MoS2 to metallic MoN and realize both lateral and vertical MoN-MoS2 heterostructures via edge and surface epitaxial conversion, respectively. The structural evolution investigation from MoS2 to MoN using high-resolution transmission electron microscopy suggests atomically bonded interface for lateral heterostructures and moiré pattern in vertical heterostructures. Moreover, mask-assisted atomic substitution is applied to create patterned MoN-MoS2-MoN lateral heterostructures. Electrical measurements reveal a Schottky barrier height of meV for a three-layer MoS2-MoN interface, showcasing the potential of atomically bonded lateral heterostructures for MoS2 electronics with MoN as contact electrodes.

7.
ACS Nano ; 16(3): 3704-3714, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35201755

RESUMEN

By monitoring opioid metabolites, wastewater-based epidemiology (WBE) could be an excellent tool for real-time information on the consumption of illicit drugs. A key limitation of WBE is the reliance on costly laboratory-based techniques that require substantial infrastructure and trained personnel, resulting in long turnaround times. Here, we present an aptamer-based graphene field effect transistor (AptG-FET) platform for simultaneous detection of three different opioid metabolites. This platform provides a reliable, rapid, and inexpensive method for quantitative analysis of opioid metabolites in wastewater. The platform delivers a limit of detection 2-3 orders of magnitude lower than previous reports, but in line with the concentration range (pg/mL to ng/mL) of these opioid metabolites present in real samples. To enable multianalyte detection, we developed a facile, reproducible, and high-yield fabrication process producing 20 G-FETs with integrated side gate platinum (Pt) electrodes on a single chip. Our devices achieved the selective multianalyte detection of three different metabolites: noroxycodone (NX), 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP), and norfentanyl (NF) in wastewater diluted 20× in buffer.


Asunto(s)
Grafito , Drogas Ilícitas , Analgésicos Opioides , Electrodos , Drogas Ilícitas/análisis , Aguas Residuales/análisis , Aguas Residuales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...